Chiral Ionic Liquids (CILs) in Asymmetric Synthesis: The story so far....

Literature Presentation Aman Desai 06.16.06

- 1. Angew. Chem. Int. Ed. 2006, 45, 3689
- 2. Angew. Chem. Int. Ed. 2006, 45, 3093
- 3. Tetrahedron: Asymmetry, 2006, 17, 1032
- 4. Tetrahedron: Asymmetry, 2005, 16, 3921

Ionic liquids – what? & why?

"....are salts that are liquid at low temperatures (< 100 °C) – they are liquids which consist only of ions."

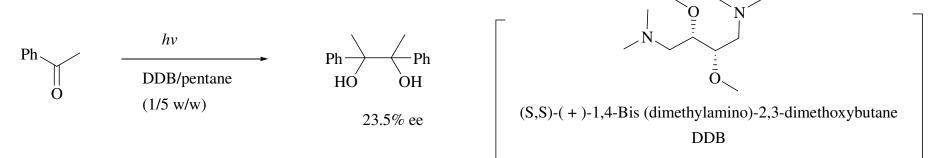
FEATURES:

- Form biphasic systems with organic product mixtures easy isolation & recovery.
- Reusability.
- No vapor pressure facilitates product separation by distillation.
- Tuneability optimization for specific applications referred to as *"designer solvents"*.
- Easy manipulation of melting points, thermal stability, density, viscosity & solubility characteristics.
- Green & clean.
- Chirality in either cation or anion.
- Commercial availability & costs pose a problem.

Chiral Ionic Liquids (CILs)

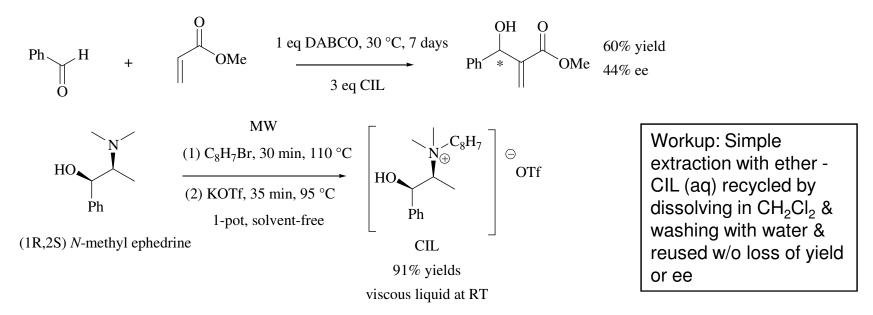
"Pure imidazolium ionic liquid can be described as polymeric hydrogen-bonded supramolecules and in some cases when mixed with other molecules, they should better be regarded as nanostructured materials with polar and non polar regions rather than homogeneous solvent"

- Dupont, J. J. Braz. Chem. Soc. 2004, 43, 4988


. With chiral ILs, solvent structuration – basis for molecular recognition – can be used to devise stereoselective reactions.

Applications of CILs:

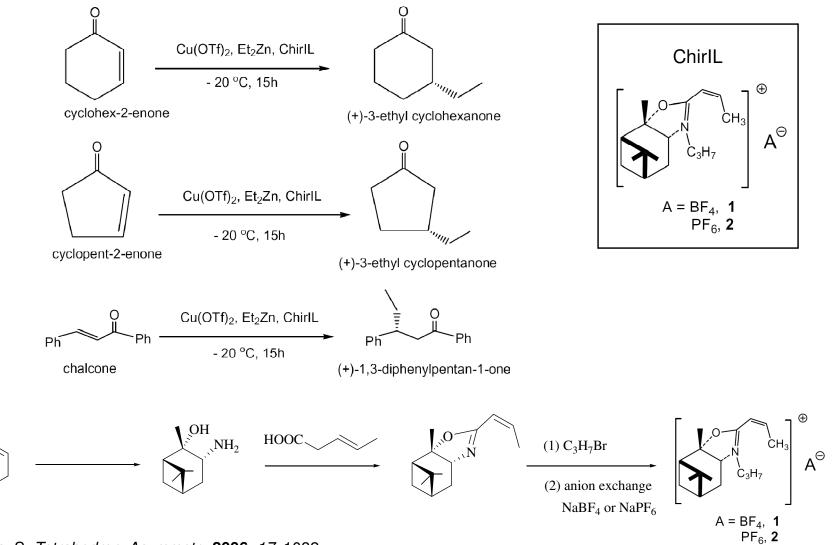
- Chiral solvents for stereoselective polymerisation
- Chiral phases for gas chromatography
- Chiral shift reagents in NMR
- Chiral crystals
- Chiral solvents for asymmetric synthesis


CILs in Asymmetric Synthesis up till 2006 – only upto 44% ee

First example of the use of a chiral solvent: Seebach, D. Angew. Chem. Int. Ed. 1975, 87, 629

First significant asymmetric induction in use of a CIL as the sole source of chirality:

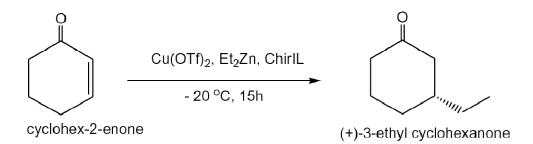
Vo-Thanh, Tetrahedron Letters, 2004, 45, 6425



CILs in Asymmetric Synthesis in 2006 *the light at the end of the tunnel?*

- 1. Malhotra, S. *Tetrahedron: Asymmetry* **2006**, *17*, 1032
 - $\rightarrow \alpha$ -pinene based CILs in Cu-catalyzed enantioselective conjugate addition of diethyl zinc to α,β -unsaturated enones upto 76% ee
- Leitner, W. Angew. Chem. Int. Ed. 2006, 45, 3689
 → L-malic acid based CILs in enantioselective aza-Baylis-Hillman reaction upto
 - \rightarrow L-malic acid based CILs in enantioselective aza-Baylis-Hillman reaction upto 84% ee
- LuO, S. and Cheng, J. P. Angew. Chem. Int. Ed. 2006, 45, 3093
 → L-proline based CILs as organocatalysts in enantioselective Michael addition to nitro-olefins upto 99% ee

Malhotra's Chemistry


α-pinene CILs in 1,4 additions of Et₂Zn to enones

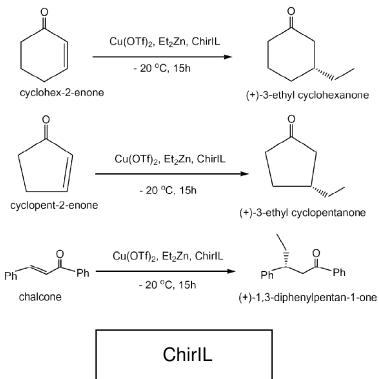
Malhotra, S. Tetrahedron: Asymmetry 2006, 17, 1032

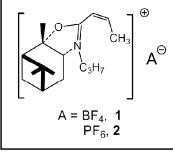
Malhotra's Chemistry

Optimization of CIL concentration

Table 1. Effect of ChirIL	mol% on	enatiomeric excess
---------------------------	---------	--------------------

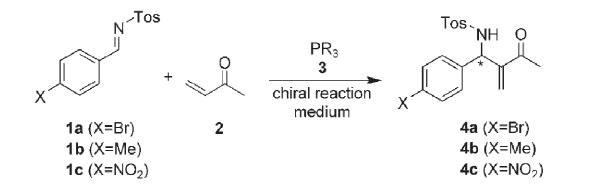
Entry	ChirIL 1 (%)	% ee ^a
1	3	17
2	5	23
3	10	38
4	15	51
5	25	74
6	35	76

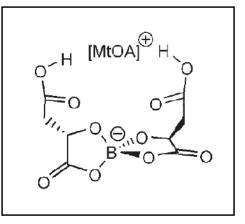

^a ee measurements were confirmed by HPLC analysis with a Chiralpak WH column.

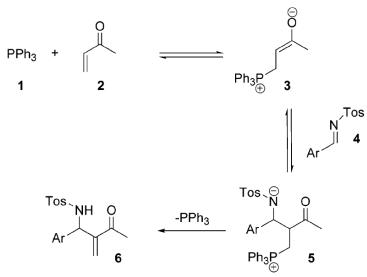

Malhotra's Chemistry

Results

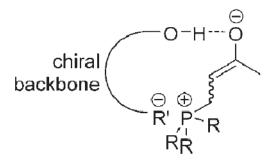
Table 2. Results	of the 1,4-addition	of diethylzinc	to	enones	in	the
presence of chiral	ionic liquids					

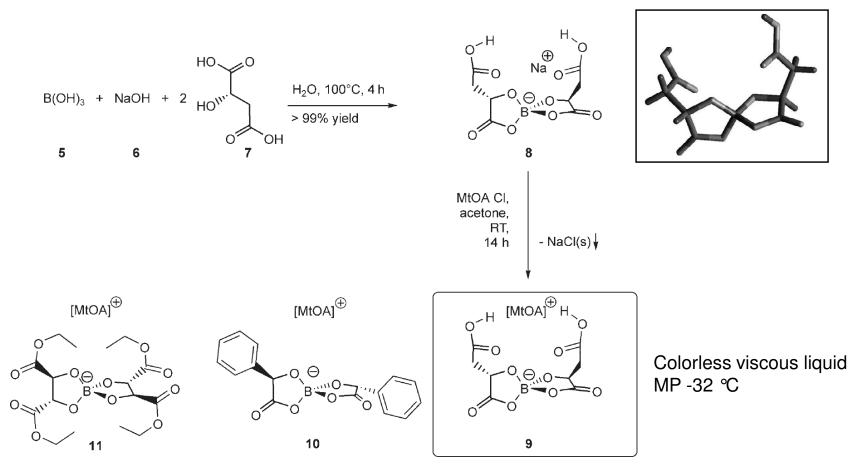

Entry	Enone	ChirIL ^a	Temperature	Pro	duct
			(°C)	Yield ^b (%)	ee ^c (%)
1	Cyclohexenone	1	-20	90	76
2	Cyclohexenone	1	0 (23)	93 (94)	68 (52)
3	Cyclohexenone	2	-20	87	35
4	Cyclohexenone	2	0 (23)	90 (91)	26 (24)
5	Cyclopentenone	1	-20	40	73
6	Cyclopentenone	1	0 (23)	39 (46)	55 (50)
7	Cyclopentenone	2	-20	48	20
8	Cyclopentenone	2	0 (23)	48 (52)	15 (12)
9	Chalcone	1	-20	52	61
10	Chalcone	1	0 (23)	55 (57)	48 (37)
11	Chalcone	2	-20	55	37
12	Chalcone	2	0 (23)	57 (58)	28 (23)



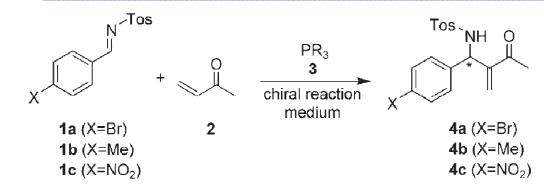

Malhotra, S. Tetrahedron: Asymmetry 2006, 17, 1032

L-malic acid CILs in aza-Baylis Hillman (ABH) reactions

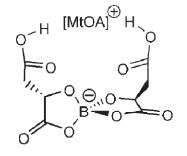



Scheme 1. Proposed Mechanism of the Aza-BH Reaction

Leitner, W. J.A.C.S. **2005**, *127*, 16762 Leitner, W. Angew. Chem. Int. Ed. **2006**, *45*, 3689 Possible bifunctional stabilization

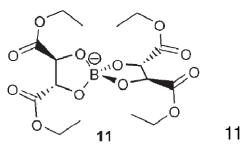


Synthesis of the CILs

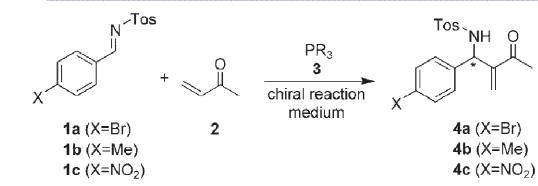


Scheme 2. Two-step synthesis of methyltrioctylammonium dimalatoborate (9). Only one of the two possible diastereoisomers is shown.

Results

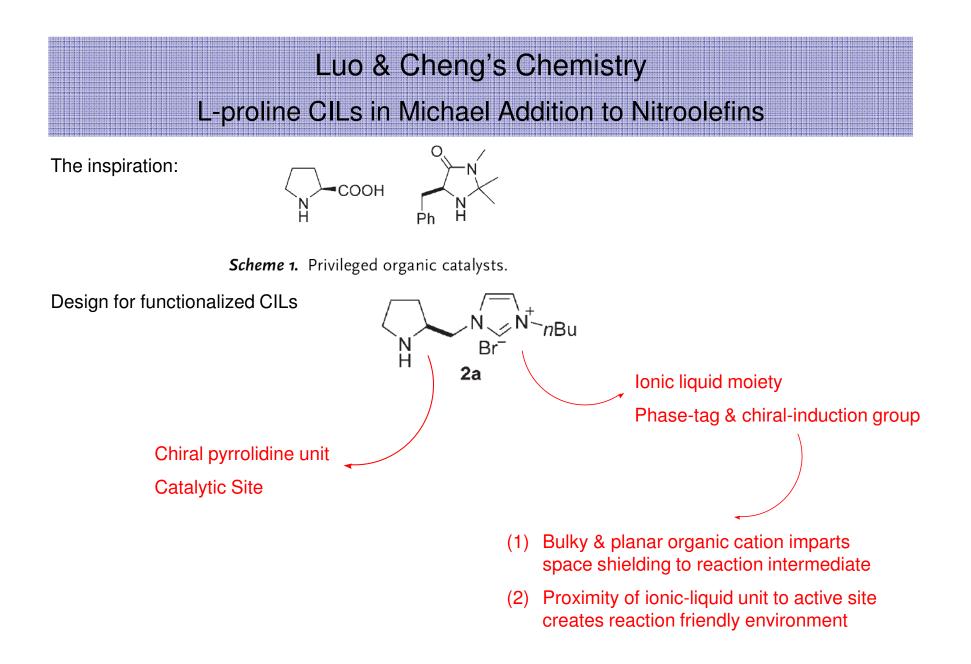

No	Imine	Nucleophilic catalyst	CIL	product	conversion %	%ee
1-4	1a	PPh ₃	9	4 a	34-39	71-84
5	1 a	PPh ₃	10	4 a	15	racemic
6	1 a	PPh ₃	11	4 a	14	racemic
7	1 a	P(o-tolyl) ₃	9	4 a	35	74
8	1 a	$(C_6F_5)PPh_2$	9	4 a	9	71
9	1b	PPh ₃	9	4 b	39	64
10	1c	PPh ₃	9	4c	-	10

9 [MtOA][⊕]

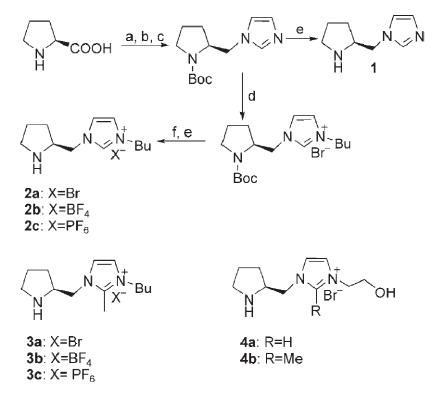

10

Leitner, W. Angew. Chem. Int. Ed. 2006, 45, 3689

Results



No	Imine	Nucleophilic catalyst	CIL	product	conversion %	%ee	
1-4	1a	PPh ₃	9	4 a	34-39	71-84	
5	1a	PPh ₃	10	4 a	15	racemic	
6	1a	PPh ₃	11	4 a	14	racemic	
7	1a	P(o-tolyl)	9	4 a	35	74	
8	1a	$(C_6F_5)PPh_2$	9	4 a	9	71	
9	1b	PPh ₃	9	4b	39	64	
10	1c	PPh ₃	9	4c	-	10	


Comparable with the best catalysts in conventional solvents for ABH reactions

 \rightarrow 94% ee

JACS, 2005, 127, 3680

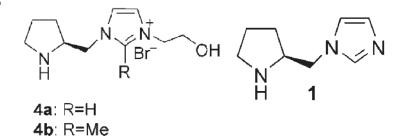
Luo & Cheng's Chemistry Synthesis of CILs

Scheme 2. Synthesis of functionalized chiral ionic liquids. Conditions a) LiAlH₄, THF, 75%; b) 1. Boc₂O, NaOH; 2. TosCl, pyridine, 90% for 2 steps; c) NaH, imidazole, 83%; d) *n*BuBr, toluene, 70°C, 93%; e) HCl/EtOH; then sat. NaHCO₃, 90%; f) NaX, acetone/acetonitrile, room temperature. Boc = *tert*-butoxycarbonyl, THF = tetrahydrofuran, Tos = toluene-4-sulfonyl.

LuO, S. and Cheng, J. P. Angew. Chem. Int. Ed. 2006, 45, 3093

45% total yield Straightforward synthesis All CILs – viscous liquids at RT Soluble in moderately polar solvents & insoluble in less polar solvents Hence, suffice for practical applications!!

Trying out the different toys...

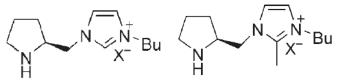

Table 1: The effect of chiral ionic-liquid catalysts in asymmetric Michael additions of cyclohexanone and *trans*- β -nitrostyrene.^[a]

0			O Ph
\square		15 mol% cat.	
	Ph NO2	5 mol% TFA	
\sim		RT	\checkmark
			5

Entry	Catalyst	t [h]	Yield [%] ^[b]	syn/anti ^[c]	ee [%] ^[d]
1	1	18	97	97:3	91
2	2a	10	99	99:1	98
3 ^[e]	2a	20	99	99:1	97
4	2 b	8	100	99:1	99
5 ^[f]	2 b	8	97	97:3	94
6 ^[g]	2b	24	99	96:4	91
7 ^[h]	2b	48	96	97:3	93
8	2c	12	86	98:2	87
9	3 a	20	97	97:3	97
10	3 b	16	100	96:4	94
11	3c	12	40	96:4	82
12	4a	18	86	97:3	89
13	4b	18	25	94:6	70

 $\underbrace{ \bigvee_{N} \bigvee_{X^{-}Bu}^{N^{+}} H }_{X^{-}Bu} \underbrace{ \bigvee_{N} \bigvee_{X^{-}Bu}^{N^{+}} H }_{H} \underbrace{ \bigvee_{N} \bigvee_{X^{-}} H }_{H} \underbrace{ \bigvee_{N} \bigvee_{X^{-} H } \underbrace{ \bigvee_{N} \bigvee_{X^{-}} H }_{H} \underbrace{ \bigvee_{N} \bigvee_{X^{-} H } \underbrace{ \bigvee_{N} \bigvee_$

2a: X=Br 2b: X=BF₄ 2c: X=PF₆ **3a**: X=Br **3b**: X=BF₄ **3c**: X= PF₆



[a] TFA = trifluoroacetic acid. [b] Yield of isolated product. [c] Determined by ¹H NMR spectroscopy. [d] Determined by HPLC analysis (chiralcel AD-H column). [e] 10 mol% of catalyst was used. [f]– [h] Second, third, and fourth reuses of the catalyst, respectively.

Trying out the different toys..

Table 1: The effect of chiral ionic-liquid catalysts in asymmetric Michael additions of cyclohexanone and *trans*- β -nitrostyrene.^[a]

0			O Ph
	+ 🔊 NO2	15 mol% cat.	
	Ph NO2	5 mol% TFA	
\sim		RT	\sim
			5

ЮH

Br⁻

2a: X=Br 2b: X=BF₄ 2c: X=PF₅

3a: X=Br **3b**: X=BF₄ **3c**: X= PF₆

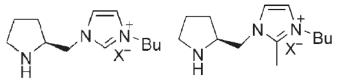
Entry	Catalyst	<i>t</i> [h]	Yield [%] ^[b]	syn/anti ^[c]	ee [%] ^[d]
1	1	18	97	97:3	91
2	2a	10	99	99:1	98
3 ^[e]	2a	20	99	99:1	97
4	2 b	8	100	99:1	99
5 ^[f]	2b	8	97	97:3	94
6 ^[g]	2b	24	99	96:4	91
7 ^[h]	2b	48	96	97:3	93
8	2c	12	86	98:2	87
9	3a	20	97	97:3	97
10	3 b	16	100	96:4	94
11	3c	12	40	96:4	82
12	4a	18	86	97:3	89
13	4b	18	25	94:6	70

[a] TFA = trifluoroacetic acid. [b] Yield of isolated product. [c] Determined by ¹H NMR spectroscopy. [d] Determined by HPLC analysis (chiralcel AD-H column). [e] 10 mol% of catalyst was used. [f]– [h] Second, third, and fourth reuses of the catalyst, respectively.

 96:4
 94

 96:4
 82

 97:3
 89


 94:6
 70

4a: R=H **4b**: R=Me

Trying out the different toys...

Table 1: The effect of chiral ionic-liquid catalysts in asymmetric Michael additions of cyclohexanone and *trans*- β -nitrostyrene.^[a]

0			O Ph
		15 mol% cat.	
	+ Ph	5 mol% TFA	
\sim		RT	\sim
			5

2a: X=Br 2b: X=BF₄ 2c: X=PF₈

3a: X=Br 3b: X=BF4 3c: X= PF₆

Entry	Catalyst	<i>t</i> [h]	Yield [%] ^[b]	syn/anti ^[c]	ee [%] ^[d]
1	1	18	97	97:3	91
2	2a	10	99	99:1	98
3 ^[e]	2a	20	99	99:1	97
4	2b	8	100	99:1	99
5 ^[f]	2 b	8	97	97:3	94
6 ^[g]	2b	24	99	96:4	91
7 ^[h]	2b	48	96	97:3	93
8	2c	12	86	98:2	87
9	3 a	20	97	97:3	97
10	3 b	16	100	96:4	94
11	3c	12	40	96:4	82
12	4a	18	86	97:3	89
13	4b	18	25	94:6	70

[a] TFA = trifluoroacetic acid. [b] Yield of isolated product. [c] Determined by ¹H NMR spectroscopy. [d] Determined by HPLC analysis (chiralcel AD-H column). [e] 10 mol% of catalyst was used. [f]-[h] Second, third, and fourth reuses of the catalyst, respectively.


ЮH Br⁻ 4a: R=H 4b: R=Me

LuO, S. and Cheng, J. P. Angew. Chem. Int. Ed. 2006, 45, 3093

Trying out the different toys...

Table 1: The effect of chiral ionic-liquid catalysts in asymmetric Michael additions of cyclohexanone and *trans*- β -nitrostyrene.^[a]

0			Q Ph	
		15 mol% cat.		
	+ Ph	5 mol% TFA		
\searrow		RT	\sim	
			5	

2a: X=Br 2b: X=BF₄ 2c: X=PF₅

3a: X=Br **3b**: X=BF₄ **3c**: X= PF₆

Entry	Catalyst	t [h]	Yield [%] ^[b]	syn/anti ^[c]	ee [%] ^[d]
1	1	18	97	97:3	91
2	2a	10	99	99:1	98
3 ^[e]	2a	20	99	99:1	97
4	2 b	8	100	99:1	99
5 ^[f]	2 b	8	97	97:3	94
6 ^[g]	2b	24	99	96:4	91
7 ^[h]	2b	48	96	97:3	93
8	2c	12	86	98:2	87
9	3a	20	97	97:3	97
10	3 b	16	100	96:4	94
11	3c	12	40	96:4	82
12	4a	18	86	97:3	89
13	4b	18	25	94:6	70

[a] TFA = trifluoroacetic acid. [b] Yield of isolated product. [c] Determined by ¹H NMR spectroscopy. [d] Determined by HPLC analysis (chiralcel AD-H column). [e] 10 mol% of catalyst was used. [f]– [h] Second, third, and fourth reuses of the catalyst, respectively.

4a: R=H 4b: R=Me

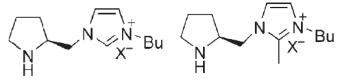
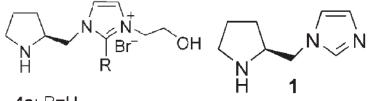

Trying out the different toys...

Table 1: The effect of chiral ionic-liquid catalysts in asymmetric Michael additions of cyclohexanone and *trans*- β -nitrostyrene.^[a]

0			O F	h
		15 mol% cat.		
	+ Ph	5 mol% TFA		·
\sim		RT	\sim	
			5	


Entry	Catalyst	<i>t</i> [h]	Yield [%] ^[b]	syn/anti ^[c]	ee [%] ^[d]
1	1	18	97	97:3	91
2	2a	10	99	99:1	98
3 ^[e]	2a	20	99	99:1	97
4	2 b	8	100	99:1	99
5 ^[f]	2 b	8	97	97:3	94
6 ^[g]	2b	24	99	96:4	91
7 ^[h]	2b	48	96	97:3	93
8	2c	12	86	98:2	87
9	3 a	20	97	97:3	97
10	3 b	16	100	96:4	94
11	3c	12	40	96:4	82
12	4a	18	86	97:3	89
13	4b	18	25	94:6	70

[a] TFA = trifluoroacetic acid. [b] Yield of isolated product. [c] Determined by ¹H NMR spectroscopy. [d] Determined by HPLC analysis (chiralcel AD-H column). [e] 10 mol% of catalyst was used. [f]–[h] Second, third, and fourth reuses of the catalyst, respectively.

2a: X=Br 2b: X=BF₄ 2c: X=PF₅

3a: X=Br **3b**: X=BF₄ **3c**: X= PF₆

4a: R=H 4b: R=Me

But wait a minute!! Why ionic liquids right?

Well, recoverability & reusability!!

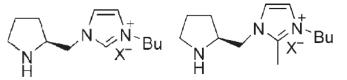
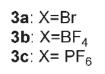
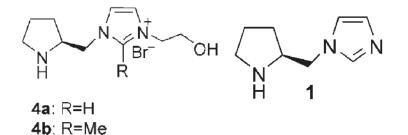

Trying out the different toys..

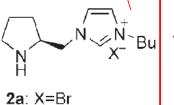
Table 1: The effect of chiral ionic-liquid catalysts in asymmetric Michael additions of cyclohexanone and *trans*- β -nitrostyrene.^[a]

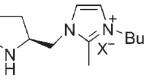

0			0	Ph
		15 mol% cat.	L	
	$+ NO_2$	→	\bigwedge	× × × × ×
	Ph ~ ~	5 mol% TFA	ļ	
\sim		RT	\sim	
			5	


Entry	Catalyst	<i>t</i> [h]	Yield [%] ^[b]	syn/anti ^[c]	ee [%] ^[d]
1	1	18	97	97:3	91
2	2a	10	99	99:1	98
3 ^[e]	2a	20	99	99:1	97
4	2 b	8	100	99:1	99
5 ^[f]	2 b	8	97	97:3	94
6 ^[g]	2b	24	99	96:4	91
7 ^[h]	2 b	48	96	97:3	93
8	2c	12	86	98:2	87
9	3 a	20	97	97:3	97
10	3 b	16	100	96:4	94
11	3c	12	40	96:4	82
12	4a	18	86	97:3	89
13	4b	18	25	94:6	70

[a] TFA = trifluoroacetic acid. [b] Yield of isolated product. [c] Determined by ¹H NMR spectroscopy. [d] Determined by HPLC analysis (chiralcel AD-H column). [e] 10 mol% of catalyst was used. [f]– [h] Second, third, and fourth reuses of the catalyst, respectively.

2a: X=Br 2b: X=BF₄ 2c: X=PF₅


Experimental: Mix, stir, dilute with ether, separate – product to column and catalst used directly for next run


Luo & Cheng's Chemistry Trying out the different toys...

→ optimal catalysts

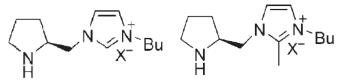
Table 1: The effect of chiral ionic-liquid catalysts in asymmetric Michael additions of cyclohexanone and *trans*- β -nitrostyrene.^[a]

0			O Ph
		15 mol% cat.	
	+ Ph	5 mol% TFA	
\sim		RT	5

Entry	Catalyst	<i>t</i> [h]	Yield [%] ^[b]	syn/anti ^[c]	ee [%] ^[d]
1	1	18	97	97:3	91
2	2a	10	99	99:1	98
3 ^[e]	2a	20	99	99:1	97
4	2 b	8	100	99:1	99
5 ^[f]	2 b	8	97	97:3	94
6 ^[g]	2b	24	99	96:4	91
7 ^[h]	2 b	48	96	97:3	93
8	2c	12	86	98:2	87
9	3a	20	97	97:3	97
10	3 b	16	100	96:4	94
11	3c	12	40	96:4	82
12	4a	18	86	97:3	89
13	4b	18	25	94:6	70

4**b**: R=Me

2b: X=BF

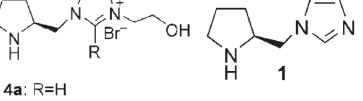

2c: X=PFa

[a] TFA = trifluoroacetic acid. [b] Yield of isolated product. [c] Determined by ¹H NMR spectroscopy. [d] Determined by HPLC analysis (chiralcel AD-H column). [e] 10 mol% of catalyst was used. [f]– [h] Second, third, and fourth reuses of the catalyst, respectively.

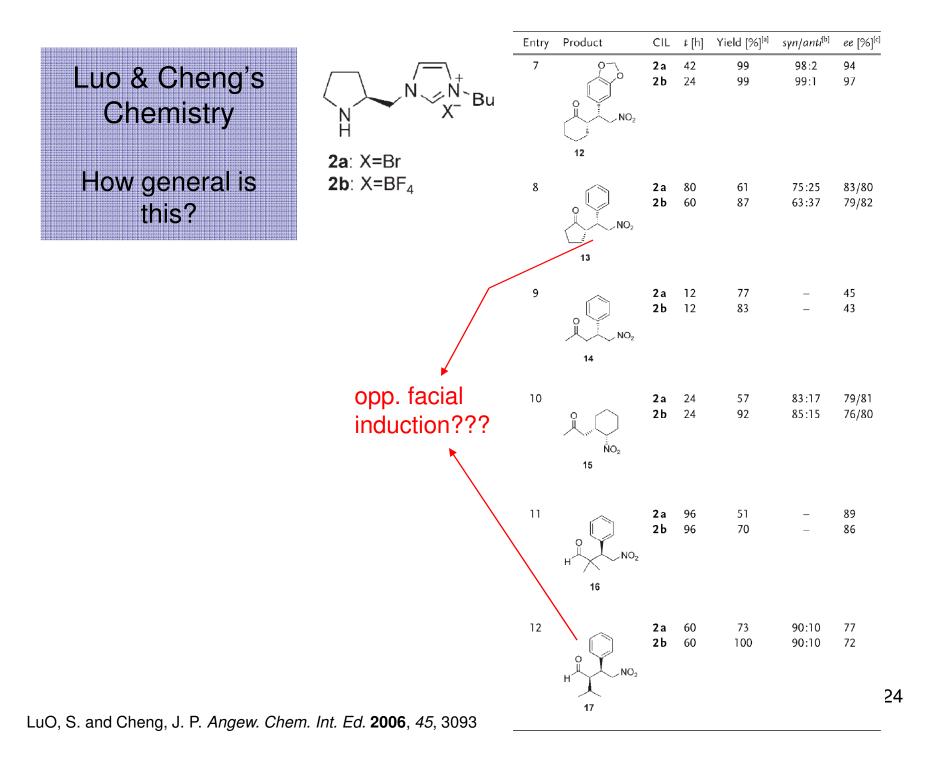
Trying out the different toys...

Table 1: The effect of chiral ionic-liquid catalysts in asymmetric Michael additions of cyclohexanone and *trans*- β -nitrostyrene.^[a]

0			O Ph
\square	, ∧ NO.	15 mol% cat.	
	Ph NO2	5 mol% TFA	
\sim		RT	\sim
			5

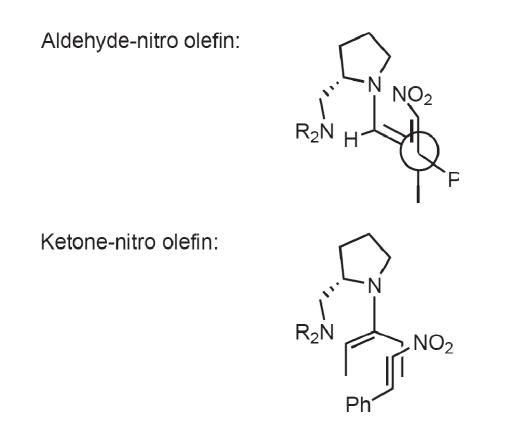


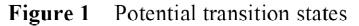
2a: X=Br 2b: X=BF₄ 2c: X=PF₈


3a: X=Br 3b: X=BF4 3c: X= PF₆

Entry	Catalyst	<i>t</i> [h]	Yield [%] ^[b]	syn/anti ^[c]	ee [%] ^[d]	
	1	18	97	97:3	91	
2	2 a	10	99	99:1	98	$\langle \rangle \rangle^{N}$
3 ^[e]	2a	20	99	99:1	97	N T
4	2 b	8	100	99:1	99	H
5 ^[f]	2 b	8	97	97:3	94	
6 ^[g]	2b	24	99	96:4	91	4a: R=H
7 ^[h]	2b	48	96	97:3	93	4b : R=Me
8	2c	12	86	98:2	87	
9	3 a	20	97	97:3	97	
10	3 b	16	100	96:4	94	
11	3c	12	40	96:4	82	
12	4a	18	86	97:3	89	
13	4b	18	25	94:6	70	

[a] TFA = trifluoroacetic acid. [b] Yield of isolated product. [c] Determined by ¹H NMR spectroscopy. [d] Determined by HPLC analysis (chiralcel AD-H column). [e] 10 mol% of catalyst was used. [f]-[h] Second, third, and fourth reuses of the catalyst, respectively.




		Entry	Product	CIL	<i>t</i> [h]	$Yield \ [\%]^{[a]}$	syn/anti ^[b]	ee [%
Luo & Cheng's Chemistry	$ \bigvee_{\substack{N \\ H}} \bigvee_{\substack{N \\ X^{-}}} N \bigvee_{\substack{N \\ X^{-}}} Bu $	1		2 a 2 b 2 b ^[d] 2 b ^[e]	12 10 10 24	92 100 92 93	98:2 99:1 96:4 97:3	95 99 94 93
How general is this?	2a : X=Br 2b : X=BF ₄	2	6 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2a 2b	12 12	99 100	99:1 99:1	96 99
		3	NO ₂ NO ₂ 8	2 a 2 b	15 10	76 94	98:2 98:2	96 96
		4	O 9	2 a 2 b	16 12	94 99	99:1 99:1	92 95
		5	OCH3 O NO2 10	2 a 2 b	20 12	94 99	99:1 99:1	94 95
		6		2 a 2 b	12 10	99 99	99:1 99:1	95 97
LuO, S. and Cheng, J. P. Angew. Chem.	. Int. Ed. 2006 , <i>45</i> , 3093		11					

Model for observed diastereo- & enantio-selectivity

Acyclic synclinical model

Conclusions

• A series of tables containing all the CILs described to date and their physical properties.

Tetrahedron: Asymmetry, **2005**, *16*, 3921

- Owing to their unique features, CILs are lot better than conventional solvents from a practical standpoint
- Recoverable & reusable repeatedly with almost equivalent results.
- Green & clean.
- Easy manipulation to suit needs.
- If developed, it might be a powerful lab as well as industrial scale tool.
- Recent applications have shown excellent results comparable with results from conventional systems could be the start of an exciting field...

or with just a few good papers out there, does it really have a future?